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Pinning and sliding of tethered monolayers on disordered substrates

Carlo Carrard and David R. Nelsof
!Department of Chemistry, University of California, Berkeley, California 94720
2Department of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 24 July 1996; revised manuscript received 7 January 1997

We study the statistical mechanics and dynamics of crystalline films with a fixed internal connectivity on a
random substrate. Defect free triangular lattices exhibit a sharp transition to a low temperature glassy phase
with anomalous phonon fluctuations and a nonlinear force-displacement law with a continuously variable
exponent, similar to the vortex glass phase of directed lines-ih dimensions. The periodicity of the tethered
monolayer acts like a filter which amplifies particular Fourier components of the disorder. However, the
absence of annealed topological defects like dislocations is crucial: the transition is destroyed when the
constraint of fixed connectivity is relaxed and dislocations are allowed to proliferate.
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I. INTRODUCTION Alternative two-dimensional models of elastic solids can
be considered, which allow for topological defects, such as
The pinning of elastic media subjected to external forceglislocations. These are+®-dimensional model§see Fig.
is a subject of considerable interest in connection with al(b)]. For vortices in superconductors, the average magnetic
variety of phenomena, ranging from tribology to epitaxial field must then be perpendicular to the plane of the film, and
surface growth to transport of flux line arrays in type Il su-defects leading to multivalued displacements of the vortices
perconductor$l]. High temperature superconductors are es-are allowed, as they are in many other experimental situa-
pecially interesting in this respect because of the simultations. Additional experimental realizations include colloidal
neous presence of large thermal fluctuations and of quenchetystals[4], amphiphillic monolayers or bilayers composed
disorder. Much effort has been devoted to the study-ef1  of lipid molecules(possibly polymerized[5], electrons in
dimensional models, which are models of vortex lines consemiconductor heterostructurg, and magnetic bubble ar-
fined to a plang2,3] [see Fig. 1a)]. Although some quanti- rays[7]. The constraint of fixed nearest neighbor connectiv-
tative questions have yet to be answered satisfactorily, #y could be enforced in some cases by polymerization or,
clear qualitative picture of the physics involved has emergednore generally, simply by large kinetic barriers to particle
which can be summarized as follows: the I-dimensional
flux array, subjected to external point disorder, displays a
transition, at some temperatufg, between a high tempera-
ture regime, dominated by thermal fluctuations, and a low
temperature regime, where the behavior of the system is con-
trolled by a line of fixed points. The low temperature phase
is a disorder-dominated phase, where the elastic system is
pinned. Pinning affects both static correlations and dynamic
responses in a nontrivial way, giving rise to nonlinear
current-voltage characteristics. Crucial to pinning is the dis-
crete nature of the elastic system, which, roughly speaking,
acts as a Fourier filter for components of disorder on length
scales corresponding to the lattice spading., the distance
between flux lines
The question naturally arises whether coherent amplifica-
tion of the disordeassumed to exist at all physically rel-
evant wave lengthss instrumental to the pinning of a vortex
array; that is, it is important to question the role of long
range crystalline order of the array in selecting out particular
Fourier components of the pinning potenti@his feature is
built into the1+1-dimensional vortex line modekhich pos-
sesseslgebraiccrystalline order at all nonzero temperatures
andis also topologically perfect. The topological perfection
arises for vortex lines because the average magnetic field is FiG. 1. (a) Directed lines in #1 dimensions subjected to ran-
parallel to the plane, and thus the lines cannot terminate idom point pinning due to a disordered substréte . Tethered net-
the plane, and their labeling in a perfect crystalline sequenc®&ork of particles in 2-0 dimensions subjected to random point
is always unambiguous. pinning due to a disordered substrate.
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exchanges at low temperature. These systems can be topo-
logically perfect, or else can be subject to either quenched or
annealed internal defects, in addition to the external pinning
potential.

The goal of the present work is to develop the theory of
pinned two-dimensional crystals within the framework of
two-dimensional elasticity theory. For the case of a topologi-
cally perfect crystal of identical tethered particles, subjected
to thermal fluctuations and quenched pinning, we show here
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that the behavior is qualitatively similar to the+1- ViV.iViv.w. Vv
dimensional model, displaying, e.g., a sharp phase transition %‘%\K%X%\/'A/%/A\%/\é/\
to a low temperature pinned phase. Although the detailed \VAVAVAVAVAV
results for the transition temperature and exponents are cer- (a) e

tainly interesting, we should emphasize that the possibility of
topological defects introduces significant modifications.
Annealed dislocations destroy positional quasi-long-range

3
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order in two-dimensional crystals above some finite melting L
temperaturdl’y, , where a liquid crystalline “hexatic” phase /‘\'/‘\'A:/;\'./;\.
exists, with algebraic long range order in the bond ahgle N 7\ /\
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As will be shown below, the melting temperature is always
smaller thanTy, so that a two-dimensional crystal is always
melted at the temperature below which pinning disorder
would become relevant for a topologically perfect sqlid.,

NaYAVAS AV,

dislocations are a relevant perturbationrg}. Thus the tran- 2
sition of a topologically perfect tethered crystal to a low \Y/A\YA\'./A\.'/
temperature pinned phase is washed out in the presence of ()

thermal:y egqltiﬂ dISIOdcatIOP Splalrs' quagOgXus bteha\.llor IS FIG. 2. (a) Annealed dislocation disorder embedded in an oth-
encountered in the random i model[3]. An extension erwise sixfold-coordinated membrane. Heavy lines join the 5- and

to vector displacement fields has been studied by Giamaerf'-coordinated sites at the cores of the dislocations. The disordered
and LeDoussd]9].

N . substrate potential is not show) Random substitutional disorder
The hexatic liquid crystalline phase of thentethered in a polymerized membrane which preserves the sixfold coordina-

membrane abov&), [see Fig. 2a)] displays similar behav- {jon of a perfect lattice. The disordered substrate potential which
ior when subjected to a component of the random substratgets on this lattice is not shown.

disorder which couples directly to the bond angle field. The
analogy with the random fieldY model[3] becomes a rig- manifold” universality clas§12]. Similar results may apply
orous mapping for annealed hexatic membranes: either dige two-dimensional tethered networks with quenched-in va-
clination unbinding or substrate disorder always destabilize&ancies, interstitials, dislocations, or disclinations, as well as
the hexatic line of fixed points, and it is unclear if there is arandom substitutional disordgt?2].
sharp finite temperature phase transition. Polymerized teth- A theory of threedimensional tethered networks with
ered membranes behave differently, however. Althoughboth quenched random internal defeatsd a quenched ran-
guenched-in unpaired dislocations destroy translational londom external potential would have interesting implications
range order, they cannot drive the shear modulus to zerdor the tangled arrays of vortex lines which may arise when
The finite shear modulus makes the bond angle fluctuationisulk type Il superconductors are subjected to strong external
“massive” [8]. These fluctuations are now stable to weakmagnetic fields. If melted flux liquids are cooled rapidly,
external disorder. barriers to flux cutting13] may become sufficiently large
Quenchedopological disorder has recently been studiedthat the vortex lines freeze at low temperatures into a non-
for “tethered surfaces’{10], in which defects are frozen into equilibrium directed “polymer glass{14]. The usual trian-
a two-dimensional network of covalently bonded particlesgular Abrikosov flux lattice would then be disrupted by a
fluctuating in three dimensions. It is of considerable interestjuenched array of dislocation and disclination lines of arbi-
to determine what happens when such disordered tethererdhrily large size. The resulting vortex array could have a
surfaces are forced to lie flat and brought into contact with ashear modulus over a wide range of experimental time scales
disordered polycrystalline or amorphous substrate. A particubecause of entanglement constraints, and would be subject to
larly simple example of such tethered disorder is shown impoint pinning by imperfections in the underlying host super-
Fig. 2b), where a topologically perfect triangular lattice is conducting material.
disrupted by random substitutional disorder. Unfortunately, This paper is organized as follows. In Sec. I, we present
the method used in this paper cannot be directly applied tthe theory of ideaktopologically perfect two-dimensional
such systemg$11]. Tethered substitutional disorder invali- crystals subject to external point disorder. Effects of an-
dates a straightforward analogy with random field modelsealed dislocations are discussed in Sec. lll, and some con-
(see Sec. )l Cule and Hwa studied this problem in one cluding remarks are presented in Sec. IV. Some of the effects
dimension, and concluded that a new, strongly pinned glassyf quenched substitutional disorder are discussed in Appen-
phase arises, characterized by exponents in the “randomix A. Technical details of the derivation of the renormaliza-
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tion group recursion relation; used in Sec. Il are contained in 015"‘ 025+ 6(01,02) =T 2.6
Appendix B. Appendix C derives the exponerifor a relax-

ational model of tethered crystalline membrane dynamicswhich can be expanded as a power series in the small dis-

An Or_nstein-Zer_nicke description of the hexatic phase is deblacemenﬁ. Upon noting that the zeroth order term is
rived in Appendix D.

o (rXb)-z | (rxa)z
Il. PINNING OF IDEAL CRYSTALS O1=—=_5 + 0=~ —= =5 2.7
|ax b |ax bl

Consider a two-dimensional Bravais lattid®,,=ma
+nb, and denote byT(m,n) the displacement from the equi-
librium position Ifzmn. We begin by restricting our analysis to
an ideal lattice of identical particles, where the displacements
are single-valued functions of position. Thus we exclude for Upin’“f d?rv(r)
the moment the possibility of topological defects. The strains
associated with random substitutional disorder will be dis-

cussed later in this section. The energy of an ideal crystal = . . .
undergoing a small deformation can be expressed, using COH\{here{Gmr} are reciprocal lattice vectors. The total Hamil-

tinuum elasticity theory, by the harmonic Hamiltonian toman_of the system s .obtalned by adding the Hamﬂtoman
of an ideal two-dimensional crystal to the pinning energy.

We study the effect of a random distribution of weak pinning
Hozéf d?r(Auf+2uu?), (2.1)  potentials, with mean and variance defined by

and using thed function to eliminate the integrals over;
and o,, we can write the total pinning energy as

(_‘]_— V) . G)Z eiémn'[F_J(F)],
mn
(2.8

lax b

where\ andu are Lamecoefficients, and the strain tensor is V(r)=0, V(NV(r")=AsXr—r"). 2.9

defined as _ . :
If we restrict our attention to the seven smallest reciprocal

Uij(F)Z%(ainJrﬁjUi)- (2.2 lattice vectors(including G,,,=0) in the summation of Eq.
(2.8), then the total Hamiltonian which comprises our model
The only regular lattice in two dimensions with sufficient may be approximatetlp to an additive constanby
symmetry to be described by thsotropic elastic theory

(2.1) is a triangular arraj15]. In this case, it is convenient to 1 -
take g 23] H=3 d?r| Auf +2uuf —w(r)u;
N . 13 3 N
a=ag(1,0, b=ag 5,7>, (2.3 +> VGl(r)e'G"”“)), (2.10
=1
wherea, is the lattice constant. where theG,, I=1, 2, and 3, are three reciprocal lattice

If the lattice is subjected to an external pinning po-yectors inclined at 120° angles to each other in the innermost
tential, the total pinning energy is given by, ring,
=3 V[ Rmnt U(m,n)]. With the aid of Poisson’s summa- i
tion formula, we write - V()
rN=-——-, (211)
. |ax bl
Upin:f d2rV(r)E 52[r_Rmn_u(man)] .
mn andVg(r) is a local Fourier component of the random po-
R . R tential,
:f d2rV(r)f dolf d0'252[r_0'1a_0'2b R
- 1 == V(r!
- . Vé(r):mf d?r'e'e —a( 2 (2.12
— (01,0512 emPotar), (2.4 |axb|
Pq
The integration is carried out over an ark&, centered on
where (n,n) and (p,q) are pairs of integers. Next we ¢ |arge compared to the lattice spacing but small compared

change integration variables frone;,0, to F=(x,y) to the sample dimensions. We have neglected terms of the
=,a+o,b+U(oy,0,). The Jacobian of this tranformation form V- u exp(G,-[r—u(r)]), which are irrelevant variables

is on the surface of fixed points we discuss below. In Appendix
A, we show that random substitutional disorder contributes
901 90, 901 907 _ 1 (1-%.0) 2.5 to w(r) and leads as well to a random term of the form
gx dy Yy X |axb| ' ' 3/d%r wi;(r)u;;(r). A two-dimensional bead and spring

model[1] with random spring lengths contains similar con-
The § function in Eq.(2.4) fixes the values ofr; ando, to  tributions. Quenched substitutional disorder has important
be the root of additional effects, however. Internal disorder in the particle



800 CARLO CARRARO AND DAVID R. NELSON 56

sizes or bond lengths violates tliéscretetranslational in- A
variance of the Hamiltonian(2.10 under u(r)—u(r) 9= 1202 (2.1

+I§mn. Cule and Hwa argued that this symmetry breaking L
leads to an effective “random manifold” potential which whereQ)=|axb| is the area of the unit cell.

depends in a complicated way dsoth r and u(r), and The use of replicas brings out an important property of the
causes an |nstab|||ty to a more Strong|y pinned g|assy phag@Ode'. Note that the interaction term involves only differ-
than the one studied hef&2]. ences of fields with different replica indices. Hence the

For tethered networks aflentical particles, we expect “center of mass,” in replica space, of the fields,
that pinning effects due to the random phases and amplitudes
embodied in{VGI} will be important below some critical \ffznfl’zz G

temperature, and that the properties of the system in the vi-

cinity of this temperature will be perturbatively accessible by ] o _
renormalization group methods. The starting point of theS afrge flgld and does not suffer renormalization. Th|§ sym-
renormalization program is perturbation theory. ComputatioriMetry implies that 2.+ —nA, xw—nB do not renormalize,

of the disorder-averaged observables of interest, such as teresult valid to all orders in perturbation theory, similar to
free energy or the two-point functions, requires expandindhe invariance under_renormallzanon of the spin wave stiff-
the logarithm of the partition functio® in powers of the Ness in the random-fieldY model[16]. As a consequence,
weak pinning potential and averaging term by term. Suctihe renormalization group flow of the disorder coupliggis
averages are conveniently handled by the replica trick, whicn€ dimensional.

(2.17

involves first calculating2"= 1+ ninZ+0O(n?) and eventu- Next, consider the connected Green's function
ally taking the limitn— 0. The disorder average &" leads Pz
to NN n
u(nu(r'))e=———=—"=-
(unu(r)e 93,(r)a3;(r")
—_— - - 0 |
Z“=f Duy- - - Dupe” "l T 74lT, (213 1 223
= —-— =5 i (2.18
. . N 93i(radi(r') |, _,
where the harmonic term is -
obtained from the generating functional
M _1 é f dk (—KKH[ P! +(2u+N)PE]S
—_ —u4a —_ L = a — s — . N N N
T 214 ) (2m?” HETRep TR 10 Z”[J]:zn<exp(|fd2u(r).2 ua(r))>
. * R
—BP[—AP;}ujg(k), (2.14 (2.19

Hereafter, the notatiog ) will stand for average with re-

and the interaction term is -
spect to the integrand in Eq2.13. Since the source

! 3 n oL couples only to¥, a free field, this Green'’s function is the
7=—g|21 f dzf% CoYG-[u,(r)—ug(r)]). free correlation function, independent gf
(2.19 — T 3u+h |i—1

(U (DU (r'))e=—&;; In
Greek indices label different replicas, while latin subscripts o ‘ Vamp 2pt N ag
(i,j=1,2) are used for the components of the displacement ..
vectoru. Summation over repeated indideandj is under- [F=Tol—, (2.20

stood. The vectoré, are the smallest nonzero vectors in the\ynere the connected part {AX)B(xX'))e=(A(X)B(X'))

reciprocal IattiC(ze. Forza tgiangular lattice of spaciag,  _(A(x))(B(x')). Thus this connected correlation function
1=1,2,3 and G| “= 167°/3a;. Effects due to reciprocal lat- s insensitive to the presence of randomness in the system.
tice vectors of larger norm are irrelevant. The peculiar properties of the glassy phase do appear,

~The structure of the replicated Hamiltonian is quite however, in the nontrivial behavior of some response func-
simple. The harmonic part contains a term diagonal in thgions as well as in the full correlation function
replica indices. This is simply the replicated Hamiltonian of<

an ideal two-dimensional crystal in Fourier space, Whereu‘(r)uj(r )), which, according to the analysis above, is a

PL and PT are lonaitudinal and transverse proiectors re_probe of sample-to-sample fluctuations. In the language of
ij 2 ng € proj ' “replicas, these fluctuations are captured by introducing a
spectively. In addition, transverse and longitudinal terms are " . ,
lica-dependent source fieldl,(r), and a new generating

considered, which are constant in replica space. The tra eplic
verse term, while not present initially, is generated by renoriunctional

malization. Its coefficienB can be set to zero initially. The

cosine term arises as a consequence of the discrete nature of Z”[{ja}]=§< exp{ i f erE ja(F) . JQ(F)) >

the lattice. Its amplitude is related to the correlation function a R

of the randomness by (2.21



56 PINNING AND SLIDING OF TETHERED MONOLAYERS ... 801

Differentiation with respect toia yields the Green’s func- dn B
tions m—o,
Gijap(r—1")=(Uia(NUjs(r"))g. (2.22 du
dal -~

Provided symmetry under permutation of the replica indices

holds, it dg__ -~ 2
Oiee, e ean Wit 4 =270 50216~ 1o()], (229

<ui(F)uj(F,)>C:"m[Gij11(F_F,)_Gij12(F_F,)]a dA ~yy 2T .
n—0 -9 §M3M+)\[|o(</f)—i|1(lﬁ)],
——— - - dB —,, 2u+\
(ui(ru;(r )>_r|1|inOGij11(r r', (2.23 W:gzg%zﬂno(ww%u(w],

where the limith— 0 is here simply a convenient bookkeep- where§E37-rgca2(L/a\/E)27. The flow of the disorder cou-

ing device for doing perturbation theory. pling to zero forr<0, i.e., forT>T,, means that the dis-
The perturbation series for the disorder-averaged Green'greteness of the lattice is irrelevant in the high temperature

functions diverges in the thermodynamic limit at low tem- phase. Thus the correlation functions in this phase are similar

perature. The divergent diagrams are most easily recognized the Gaussian model of RdfL7]. In particular,

by considering the expansion of the free energy,

1 (ui(Nu;(0))~—7 Inr, (2.30
(F=Fo)=— lim 2 (= (He 31{(Hn) ) where
—((Ha)&RI+- ). (2.24 L a,[ T 3wt A
77_|G| + 2
Amp 2u+N 4m(2u+N)
Upon defining a reduced temperature A B
+ + . 2.3
1 T_1 TIG|? 3u+\ - br(2m+N)2 " dmpu? (2.3D
~ T_g_ 8mu 2u+N\’ (225

Below Ty, on the other hand, the disorder coupling flows
toward a finite fixed point value ofg* =37/[ 21 o(/2)
—1lo(¥)]. The runaway flows oA andB cause the correla-
” tion function in Eq.(2.30 to grow as IAr, a behavior which
_< n>R~gca2n(n—1)37T(L/a\E)27, (2.2 Was termed “super-roughening” in the context of scalar

one finds, up to regular terms, in ordgr

T models of surface growtfl8].
The change in equilibrium correlation functions from
and, in order ¢?), “rough” In r growth to “super-rough” Ifr growth is a char-

acteristic of the low temperature glassy ph&3¢l8]. An-
1 |2 > 2 4 other distinctive property of the glassy phase is the nontrivial
S72{(Hn)r~—gc7a’n(n—1)[1o(4) +(n=2)lo(412)] near-equilibrium dynamics. The dissipative dynamics of the
system embodied in the Langevin equation

27
i) %[(L/aﬁ)zf—l]. M.z

X 3772 -
a\/E yohu=— E‘l‘g, (232

(2.27 .
with ¢ a thermal noise, can also be studied by dynamical

Infrared and ultraviolet cutoff& and a, respectively, have renormalization group method49]. The detailed treatment
been introducedr=1e’~0.79, whereE is Euler's con- of this model is described in Appendix C. Regularization of

stant;l, is a modified Bessel function, and the perturbative expansion of the dynamic response leads to
a renormalized friction coefficieny, from which the dy-
T|G|2(n+)) namic exponent can be extracted
= A at N (2.28
T(ZREN) z=2, T>Tg,
The deta!ls of the calculation can be found in Appendix .B. 24 2utN] g |MGEED ,
The divergences can be removed order by order in az—o4+ —_— "7 —f_ T

double expansion in powers gf and 7. The parameters of Vo BuH+ N 2ut+N [21o(42) = 1o(¥)]’

the renormalized theory transform, under rescaling of length
by €', according to the following equations: T<Tg, (2.33
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where c=3e?6~0.79 is the same function of Euler's con- using a vector extension of the+l-dimensional random
stant as appears in the static calculation, gndas defined phase model. The predictions for vector models without to-

in Eq. (2.28. pological defects are qualitatively similar to the scalar
model: the discreteness of the vortex array coherently en-
IIl. EXTERNAL DISORDER hances the Fourier components of the external disorder

AND TOPOLOGICAL DEFECTS which are commensurate with the lattice, leading to a glassy

] ) . ] Ehase at low temperature. This phase is characterized by a
The foregoing discussion assumed the fixed topology ohonlinear response to an external driving force, as well as by
an ideal lattice. Spontaneous nucleation of topological destatic correlations which diverge more strongly than a simple

fects, which occurs above the melting temperature logarithm. Quantitative expressions for the static and dy-
namic exponents near the transition were computed within a
JTARN T DN ; N
M= a?, (3.1 perturbative renormalization group scheme.
4w 2u+N The physics changes completely, if annealed topological

defects are allowed in the two-dimensional lattice. The pos-
sibility of important topological defects constitutes the prin-
gipal difference between thet®- and the #1-dimensional
models of vortex arrays. Both annealed and quenched dislo-
cations have been considered, the most interesting case being

bati Thuseitherth d b il Brovided by quenched dislocations. The nonvanishing shear
turbation aff 4. Thuseitherthe random substrate potential or 4,15 of a membrane with guenched-in dislocations pre-

thermall_y excit_ed dislocation pairs _a_lways destabilize the‘\/ents the bond angle from following the random bias of an
harmonic Hamiltonian, and the transition of Sec. Il does noty, 1o nal polycrystalline substrate, so that the bond angle or-

pceur in the presence O.f anngaled topological defgcts. der parameter in quenched hexatics is stable to weak disorder
Although annealed dislocations destroy translational Ionq)f this type[20]

range order, the resulting hexatic phase does posatss

destroys translational long range ord8t. The ratio of the
glass temperature to the melting temperature is alway
greater than 1in fact, T,/Ty=6 for all elastic constant
values in the physically relevant range>0, u+X>0), so

braio | der in the bond le. A h . Our study is relevant to several other situations besides
raig long range order in the bond angle. armonIiChe pinning of vortex arrays in type Il superconductors. Sys-

Ham|It<_)n|an f(_)r the hexa_tlc p_hase can be obtained in thetems of current experimental interest were mentioned in Sec.
Ornstein-Zernicke approximation, valid at long wavelength.ll Here we would like to comment on possible applications to

we details o_l‘(jthehderivat)tjlqn afrehprtlasented inl Appﬁr:_ldix !IDtriboIogy, the study of friction and lubrication. We are inter-
e can consider the stability of the long wavelength Hamil-oqi0 4 i the behavior of two surfaces brought in contact and

tonian, Eq.(D14), to an external random potential coupled to rubbed against each other in the presence of an intermediate

the t_)ond angle. An gxperi_mental re_aliza_tion of this system i?hin layer of lubricant. This boundary layer is often modeled
provided by a hexatic liquid crystalline film adsorbed onto a,q 5 yy6.dimensional, incommensurate crystalline overlayer

polycrystalline substrate, that is, a substrate whose random 1]. Our work may be useful in generating more realistic

varying cry;tallogrgphic axes locally k_)ias .the orientation Ofdescriptions which allow fofa) surface imperfections, acting
the bonds in the film. The total Hamiltonian becomes pre-;q pinning centers on the lubricant overlayer; afim

cisely that of a random fielXY model, which was studied ; ; ot
o ' changes in topology of the overlayer, especially excitation of
by Cardy and Ostlun@3]. Similar to the case ofintethered  jigiocations, which must surely be important at finite tem-

crystalline films _dlscusged _above, it follows from RB] perature and/or under finite stresses. We leave the pursuit of
that the harmonic Hamiltonia(D14) is always destabilized this interesting topic to future work

either by the external disorder or by thermally excitiscli- Noted addedAfter this paper was submitted, we received
nations There is an important difference between crystallln_ean interesting preprint by D. Carpentier and P. Le Doussal
and hexatic membranes, however. In the case of a crystalli

. X A r'(%0nd-mat/961116)8/\/hich reaches similar conclusions using
membrane, the ideal topology can be fixed by polymerizay, iterent renormalization group method. Comparison with
tion, and the fixed I!ne discovered n S_ec_. . shquld be eX4peir results enabled us to uncover an error in the first version
perimentally accessible. In contrast, it is impossible to prege paper, which, although it did not affect our basic con-
vent disclinations from destabilizing the vortex glass fixed,qions "changes the coefficients in our recursion relations.
line in a hexatic film, except by quenching the topology of 5ce the error is corrected, results obtained by the different

Fhe film. I_—Iowever, in Fhis case E(D14) reveals, upon treat-  methods agree. We are grateful to P. Le Doussal for bringing
ing the singular density and bond angle fluctuatiops and g discrepancy to our attention.
86, as quenched variables, that this quenched hexatic phase

has a finite shear modulus, rendering the bond fluctuations

massive. Because of the finite shear modulus, the bond angle ACKNOWLEDGMENTS

excitations are stable to weak disorder. Whether a tethered . ) ) .
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IV. DISCUSSION AND CONCLUSIONS
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APPENDIX A The term proportional tay; represents random dilations or
Effects due to a disorderesubstratewere incorporated contractions dye to isolated Impurities in positions of h!gh
symmetry, while the more complicated tensorial coupling

inFo isotropig: two-dilmensional elasticity theor_y in Sec. .“' In describes more anisotropic defect configurations. Upon rep-
this appendix, we discuss effects on the elastic properties dL'e y

o . ) ICating this Hamiltonian and tracing out the Gaussian disor-
to random substitutional disordar the membraneas exem- der, we obtain contributions to the coefficieftsand B in
plified by the large impurity atoms displayed in Figlbp E ’(2 14
We donot discuss the important interplay between random q. (.29
substitutional disorder and the disorder substrate potential
[12]. A distribution of impurity atoms with sizes different APPENDIX B
from the average leads to random straiAenealeddefects This appendix details the calculations leading to the flow

of this kind can be integrated out and simply alter the elas“%quations forg, A, andB. We begin by evaluating the right
constantsy and X. As we shall see, the strains in the and side of E,q(’2.24) term by term. To ordeg
guenched case contribute to the coefficieAtand B dis- '

played in the replicated Hamiltonian, E®.14). Quenched H 3 n
random vacancy or interstitial defects as well as tightly <—”>:—gz fdzrz (expliG-[Uy(r)—ug(n)1})
bound dislocations pairs or triplets would affektand B T =1 ap

similarly. We work with a continuum model studied already 3 n d2k 1

in the context of random tethered surfaces fluctuating in =—92 dzrz ex;{—TJ —z—zG:

three dimension§10]. The only change required is neglect =1 ap (2m)"k

of displacements normal to the average plane of the mem- 1 . RN

brane. These phonon modes become massive due to the in- X ;Pij+2M+)\ Pi |Gjl- (B1)
teraction with the substrate and can be integrated out without

affecting our basic results. Before proceeding with the calculation, we must introduce

_ We assume a topolgically perfect lattice and replaceytoffs to deal with infrared and ultraviolet singularities aris-
Rmn by a coarse-grained functidR(r) which gives the lat- ing from integrals of the type

tice displacemenf{ as a function of the reference position

> 2 ik-r
r. We use a generalization of E.1), (: k G!eTPE"-G} _ (B2)
71')2 k
H :%J' dzr()\uﬁ+2,uui2j), (A1) A long wavelength cutoft is introduced to eliminate infra-
red divergences. Its effect amounts to shifting
where the strain matrix is now given p§0] 1/k?—1/(k?>+L~2). The limit L—o can be taken safely at
.. . . the end of the calculations. The ultraviolet divergences are
ujj=3(aR-R—;R% 9;R%). (A2)  removed in coordinate space by the simple shift

o ) . ) ) L r—+r-+a“, wherea is a short wavelength cutoff of order
HereR(r) is a preferred lattice distortion which minimizes the lattice constant. Note the short distance limit

the energy in the absence of thermal fluctuations. In the ab-

sence of defectsg;R®-9;R°=g;;. Localized defects like d%k  eks 1 r’+a?
substitutional disorder, vacancies, interstitials, etc., lead to 522y 2 =5-Ko -
St . ; (2m)° k“+L o0, o 2T L
deviations which we parametrize by st=re+a
1 I (r’+a?)
FRO- 3,RO= &+ (1), (A3) T g
If we assume an uncorrelated Gaussian disorder, the prob- r <1 (B3
ability distribution of the tensocij(F) takes the fornj10] L ™ (B3)
R 1 1 Here, K, is a modified Bessel function, ant= (1/4)e?”
- 20~2_ T 2 2 s INO ’ )
Pr[cij(r)]ocexp{ ZUJ d’rejj Zozf dr Cii)' where y is Euler's constant. Thus, the asymptotic behavior

(Ad) of the integrals in Eq(B2) is readily evaluated

We now setR(r)=r+u(r), so that d’k _ekr |G|? c(r?+a?)
| TLel
. . 2m2CiE Pi G T gy I
&iR'(ij:5ij+%(F?in‘F(?J'Ui)‘l‘%aiU'ﬁjumﬁij‘l‘uij. N
(A5) (G-1)? |GJ?
amrZ 8w | (B4)

—+

Hamiltonian(A1) then takes the form

Upon substituting into Eq(B1), and recalling Eq(2.25,
H=const+%f d?r[\uf +2puf = hei(Nug(r) which defines the reduced temperature=1—(T/T,)
=1—(T|G|%/87u)(3u+N/2;m+\), we obtain Eq(2.26).
—2uC;(Nuj; . (A6) Next, in orderg?, one has
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HI 2 3 3 n n R o o R o o
<<?) >=922 222> fdzrfdzr'<exmie.~<ua<r>—uﬁ(r>]}exmiew~[u;<r'>—ug<r'>]}>

3 3 n n =\ (4—47) 2
a G| G|r 3/.L+)\ C(|r_r | +a
=g° = dzrfdzr’exp(—T @
g =121 aB 4 (L f Q“ 8mu 2,u+)\ L?
g (pt
a'p T C(F_pry—1
xex;{ TQu4 477#(2M+>\)(G| (r=r")Gy - (r—r") ) (B5)

whereQi}f’z5aa/+5ﬁ3/—5aﬁ,—5alﬁ, and use has been made of EB3) in anticipation of the thermodynamic limit.
Hereafter,a=ca and y=[T|G|?(u+\)/[47m(2u+\)].

Logarithmic divergencies appear, at the critical temperature(), when é|-é|/Q§EB'/|G|2=1. The logarithmically
divergent terms contribute to the multiplicative renormalization of the cougjinghile all other terms can be absorbed into
an additive constantHad we chosen to renormalize the self energy, the need of an additive renormalization would not have
arisen, but the calculations would have been considerably more invplvedgroceed, we first fix, @, and 8, which can be

done in 3 (n—1) independent ways. Then, logarithmic contributions arise eitherl ferl, Qg =1, or for I"#l,
ng:—z. The respective combinatorial weights aren22) and 2. Carrying out the remaining integrals leads to Eq.

(2.27.

We now compute the flow of the coupling constadtsB under renormalization group transformations. Because the
self-energy is momentum independent in the first order of perturbation theory, the lowest order contribution to the perturbative
renormalization ofA, B arises inO(g?). The free propagator in momentum space, obtained from{ZEtg), can be written as
the sum of two terms:

Ijaﬁ(k) M;;(K) 845+ N;j (K),

M k—l lPT ! >—Pii |, B6
ij ( )—p; ij T 20N (B6)

N k—l—B PT+1 A Pt
(k) K2 u(u—nB) 1 K2 (2u+N)(2u+r—nA) -

The perturbative expansion of the generating functional(EQJ through second order reads as

dk .
EIAAIE exp( 5 f B2 2 eI (030 K)+ 2, (KN (k) 350~
g2
X 1+g]:1(-.])+?]:2(-.])+ s (B?)
where
(4—47) 2
’ ’ - - li d k
]:2(‘]) % et fdz fdz ( ) eX[{_TQZﬁB ; G:Mij(r_r,)G} )eX[{_TJ(ZT)Z
%[ 2 GIMy (01,0 =3k T+ 3 G:’Mij<k><Jja,<E>—J,—B,(E»e‘”’H. (88)
Thus the renormalized propagamﬁ-(k) can be calculated perturbatively as
242 2
—TNR(K)S(K+K') =~ TNy (K sk R+ 29 o Fd) b (B9)
2 83, (K)83; (KN |,
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with

)
8335 (k) 83;,,(K') |

(4=47) T2
=> > d?r fdz ( ) g —TQLL > G M (T=1")Gi, | 5—=22,
i,j, (2’77) i/j/

n’ aB aﬁ

X[G{Miri(K) (80— 80 )€ T+ Gl M (K)(8ar— 8grn)€ K T ILG M (K ) (80— g€ 1
+ G M (K ) (8,41, 8, )e 1], (B10)

Contributions behaving ask? for smallk arise from

(4—47) 2
’ ’ g -> ! T
S5 (a2 e oS a6 | oS (M0 2
H’aﬁaﬁ ij (ZW)mm

Xe_ik"Glm,Mm,j(k’)(éa,M— 850, )€ T+ GEM (k) (8arn— 85 ) €7 KT Gl My (K (8, — 85,07 7]

~\ (4—47)

N a 1Y -

G PPIP) d"‘s(f) exp(—TQz,f 2 GIMii(s)G; )(2 (k823 GrGoy MM (82— )
TR aI'B/

Power counting reveals that logarithmic divergencies arise whdh anda= 8" and 8=a'. Thus, with the help of the
relations

|
2 GIm m’ |G|2 mm'»

2 GLG (G -k)2=2|G|>(P] +3P- ), (B12)
we obtain

~ 37 1 1 L
NiFf(k)=Nij(k)+gza4|G|2T7(Wﬂ['o(l/f”%'1(1//)]+mph[lo(l/l)—%ll(l//)])ﬂ{ ARt
(B13)

Upon projecting out of Eg. (B13) the longitudinal and transverse components, and recalling that
|G|?T=87u(2u+\)/(3u+\)+O(7), we finally arrive at the flow equations

dA ~af L ar 21+
d,_ ga(a) 127 £ [lo()—311()],

3ut+A
9B _geze( L 4712 2, 2Rt N 1 B14
FT g*a* WM3,LL+)\[ o) +z11(¥)]. (B14)
APPENDIX C

This appendix details the calculation of the dynamical expome@bnsider the Langevin equation for the free Hamiltonian
Hg of Eq. (2.14),

AU(r,t)=— ——=—+(r,1), C1
yau(r,t) S0 Z(r,t) (Cy

where({ is a white noise defined by the correlation
(GrHEG(r 1)) =2D & 8(r—r")s(t—t'). (C2

The fluctuation-dissipation theorem insures that thermal equilibrium at tempefaisrestablished foD=Tvy.
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Equation(C1) is easily solved. The momentum- and frequency-dependent transverse and longitudinal correlation functions
read

2Dy 2 -

OjT(E,w)E<Ui(|Z,w)Uj(—E,—w))TZWP” ,

2Dy 2

S(}L(Iz,w)E(ui(lz,w)uj(—E,—w))"=w2+772(2M+)\)2k4

Py . (C3)

The presence of an external pinning potential turns ) into Eq. (2.32 by introducing on the right hand side the
additional term

~ 0Upn 2V(1) —
P |a><b||2 G'sin(G'- [r u(r, ), (CH

which can be regarded as a perturbation. First order perturbation theory can thus be employed to compute the correlation
functions. The perturbation series is found again to diverge logarithmically bElovhis divergence causes the dynamical

exponent to deviate from its mean field valwes 2 [22]. To quantify this deviation, consider the transverse correlation
function

1 25T . bT pT z >
(u(kw)u —w)) W[ZDY Pij + PimPi (F ka))Fn(—k,—w))]+~-~, (Ch

where the overline indicates averaging over the external pinning disorder, and we have defined
L : - = OUy;
Fi(k,w)=J d2rf dt geteikr —P_ (C6)
ou;(r,t)
Upon carrying out the disorder average, we obtain

3
(Fi(Re) B (—K— )= f dt €129, GlG}(cosS[G(7,0- (7.0 )

Noting that

(co5'-[U(0)—u(0,0])=

5 2-27 N oL I
T ex pym 2G[ k,t)"’Sj (k:t)]Gj)

3\ |G|2T e (/K] e(2,u+>\)/7k2\t|
[ Jodkk PN TS

5)2—27 PPN TCTASY L2 1-7
Y _— (CY
L 2pt ) 2\ey
and settingn=0, we arrive at
PR = ~, 3 AR 2)/ L
|

Thus we can write z=2+¢(g*), (C1y

dD 2utn w |HGEEN leading to Eq.(2.33.

L——=24mga? — \/— =7(g).

dL Bu+A\2u+N

(C10 APPENDIX D

The Ornstein-Zernicke theory of hexatics is derived in
The dynamical exponent is determined by the value othis appendix. We start from the partition function of the
£(g) at the fixed point crystal
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This is a rather general expression of the two-dimensional
Z=f Dlu]Dluz]exp(—F/T), (D1)  elastic free energy. It allows us to study the effect of both
quenched and annealed defects.

where First, we consider the effect of annealed dislocations. It is
instructive to recast EqD8) in terms of density fluctuation
and bond angle variable$p and 6, respectively, which are
related to the divergence and curl of the displacement vector:
Sp=V-U, 6=V X u/2. Because the displacement vector de-

In the presence of dislocations, the displacement field  composes naturally into single-valued and singular parts,
multivalued; if an arbitrary loog encloses dislocations with

F=%J d?r(uf +2uuf). (D2)

total Burger's vectob, then U=v+uUs, (D9)
é diu;dx=b;. (D3)  so do the density fluctuation and bond angle variables:
c

It is convenient to express E(D3) in local form,

The defect source terr8(r) can be expressed in terms of

ps by noting first that, for a distribution of dislocations with

Burger vector density b(r)=3,b*s(r—r,) and

Here we have introduced a source te®(r) related to the S(r)=—V xb(r) from Eq.(D4), and, hence,

local density of Burger’s vectors; it can be easily generalized

to include other types of defects, such as disclinations, va- . 1 . . Ops

cancies, or interstitialf23]. Vors(r)= 15" Us= T

L ; T l1-0

The partition function can now be evaluated as an unres-

ticted integral over the three independent components of the B . . .

symmetric strain tensar;; , provided that constrainD4) is whereg=\/(2u+\) is the Poisson ratio.

enforced. This is easily accomplished with the aid of an aux- The partition function of annealed. d'SIOC""t'OQ&] n-
iliary field y: volves averaging over thermally excited Burger's vectors

with weight proportional to

éik€j|t9k(9|uij(F):2 BQXV)g(F_Fa)ES(F). (D4)

(D11)

2= [ DluIPlus DLl lexp—FIT)

exp(—ch d?r b(r)-b(r)
xexp{if d?r ¢(r)[ eiejdiduig (1) —S(r)] | (DY) .
=ex;{—ch dzr(4(V05)2+ m(Véps)ZH

Next we write, as can be most generally done for any

symmetric tensor, (D12
Uij(F): L(dw;+dv)+ Pﬁh, (De)  Thus, from Eqgs(D8)—(D12), it follows that
wherev(r) is a single-valued vectofdescribing, e.g., the _f D(— Fanneale
small thermal displacements of the atoms from the sites of a amnealed™ | DpoDopsDOoDOsex T )
randomly distorted lattige andh(F) a scalar field, related to (D13)
the defect densit)S(F), in terms of which the constraint ith
enforced by the auxiliary fields becomes wi
o
V#h(r)=S(r). ©7) Fannealed® 3 f A2r[4 63+ (2u+N)(3po)?]
The partition function becomes a functional integral over N 2t h

v, h, andy, and the latter fields can be integrated out easily i 1Tf 821 (8po)(Spe) + ﬁ
to obtain the free energy functional g o

LS. L1, (6 xf d?r(8ps)?+ ch dzr(wes)z

F=1 | G ~RRLRP+(2u 0 P;(K)
1
N N 2
+>\f d2r(V-0)V 2S(r)+ 3 (2u+\) T A= a2V ors) ) (D14)

oy Consider now the linear response of the system to a probe
2 2 2
Xf dr[VESn]% (D8) coupled to the bond angle. One finds easily that
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1 1 1 Similar behavior foru(q) was found by Marchetti and Nel-
Q) ;JF E.q?’ (D15  sonin a dislocation loop model of the melted Abrikosov flux
lattice [24]. In contrast, the coupling betweeip, and Spg
showing that the shear modulys vanishes at long wave- prevents the bulk modulus from vanishing at long wave-
lengths for finiteE, (i.e., above the melting temperature lengths.
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