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Pinning and sliding of tethered monolayers on disordered substrates
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We study the statistical mechanics and dynamics of crystalline films with a fixed internal connectivity on a
random substrate. Defect free triangular lattices exhibit a sharp transition to a low temperature glassy phase
with anomalous phonon fluctuations and a nonlinear force-displacement law with a continuously variable
exponent, similar to the vortex glass phase of directed lines in 111 dimensions. The periodicity of the tethered
monolayer acts like a filter which amplifies particular Fourier components of the disorder. However, the
absence of annealed topological defects like dislocations is crucial: the transition is destroyed when the
constraint of fixed connectivity is relaxed and dislocations are allowed to proliferate.
@S1063-651X~97!10707-3#
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I. INTRODUCTION

The pinning of elastic media subjected to external for
is a subject of considerable interest in connection with
variety of phenomena, ranging from tribology to epitax
surface growth to transport of flux line arrays in type II s
perconductors@1#. High temperature superconductors are
pecially interesting in this respect because of the simu
neous presence of large thermal fluctuations and of quen
disorder. Much effort has been devoted to the study of 111-
dimensional models, which are models of vortex lines c
fined to a plane@2,3# @see Fig. 1~a!#. Although some quanti-
tative questions have yet to be answered satisfactorily
clear qualitative picture of the physics involved has emerg
which can be summarized as follows: the 111-dimensional
flux array, subjected to external point disorder, display
transition, at some temperatureTg , between a high tempera
ture regime, dominated by thermal fluctuations, and a
temperature regime, where the behavior of the system is
trolled by a line of fixed points. The low temperature pha
is a disorder-dominated phase, where the elastic syste
pinned. Pinning affects both static correlations and dyna
responses in a nontrivial way, giving rise to nonline
current-voltage characteristics. Crucial to pinning is the d
crete nature of the elastic system, which, roughly speak
acts as a Fourier filter for components of disorder on len
scales corresponding to the lattice spacing~i.e., the distance
between flux lines!.

The question naturally arises whether coherent amplifi
tion of the disorder~assumed to exist at all physically re
evant wave lengths! is instrumental to the pinning of a vorte
array; that is, it is important to question the role of lon
range crystalline order of the array in selecting out particu
Fourier components of the pinning potential.This feature is
built into the111-dimensional vortex line model, which pos-
sessesalgebraiccrystalline order at all nonzero temperatur
and is also topologically perfect. The topological perfectio
arises for vortex lines because the average magnetic fie
parallel to the plane, and thus the lines cannot terminat
the plane, and their labeling in a perfect crystalline seque
is always unambiguous.
561063-651X/97/56~1!/797~12!/$10.00
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Alternative two-dimensional models of elastic solids c
be considered, which allow for topological defects, such
dislocations. These are 210-dimensional models@see Fig.
1~b!#. For vortices in superconductors, the average magn
field must then be perpendicular to the plane of the film, a
defects leading to multivalued displacements of the vorti
are allowed, as they are in many other experimental sit
tions. Additional experimental realizations include colloid
crystals@4#, amphiphillic monolayers or bilayers compose
of lipid molecules~possibly polymerized! @5#, electrons in
semiconductor heterostructures@6#, and magnetic bubble ar
rays@7#. The constraint of fixed nearest neighbor connect
ity could be enforced in some cases by polymerization
more generally, simply by large kinetic barriers to partic

FIG. 1. ~a! Directed lines in 111 dimensions subjected to ran
dom point pinning due to a disordered substrate.~b! Tethered net-
work of particles in 210 dimensions subjected to random poi
pinning due to a disordered substrate.
797 © 1997 The American Physical Society
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798 56CARLO CARRARO AND DAVID R. NELSON
exchanges at low temperature. These systems can be
logically perfect, or else can be subject to either quenche
annealed internal defects, in addition to the external pinn
potential.

The goal of the present work is to develop the theory
pinned two-dimensional crystals within the framework
two-dimensional elasticity theory. For the case of a topolo
cally perfect crystal of identical tethered particles, subjec
to thermal fluctuations and quenched pinning, we show h
that the behavior is qualitatively similar to the 111-
dimensional model, displaying, e.g., a sharp phase trans
to a low temperature pinned phase. Although the deta
results for the transition temperature and exponents are
tainly interesting, we should emphasize that the possibility
topological defects introduces significant modifications.

Annealed dislocations destroy positional quasi-long-ra
order in two-dimensional crystals above some finite melt
temperatureTM , where a liquid crystalline ‘‘hexatic’’ phase
exists, with algebraic long range order in the bond angle@8#.
As will be shown below, the melting temperature is alwa
smaller thanTg , so that a two-dimensional crystal is alwa
melted at the temperature below which pinning disor
would become relevant for a topologically perfect solid~i.e.,
dislocations are a relevant perturbation atTg). Thus the tran-
sition of a topologically perfect tethered crystal to a lo
temperature pinned phase is washed out in the presenc
thermally excited dislocation pairs. Analogous behavior
encountered in the random fieldXYmodel@3#. An extension
to vector displacement fields has been studied by Giama
and LeDoussal@9#.

The hexatic liquid crystalline phase of theuntethered
membrane aboveTM @see Fig. 2~a!# displays similar behav-
ior when subjected to a component of the random subst
disorder which couples directly to the bond angle field. T
analogy with the random fieldXY model@3# becomes a rig-
orous mapping for annealed hexatic membranes: either
clination unbinding or substrate disorder always destabi
the hexatic line of fixed points, and it is unclear if there is
sharp finite temperature phase transition. Polymerized t
ered membranes behave differently, however. Althou
quenched-in unpaired dislocations destroy translational l
range order, they cannot drive the shear modulus to z
The finite shear modulus makes the bond angle fluctuat
‘‘massive’’ @8#. These fluctuations are now stable to we
external disorder.

Quenchedtopological disorder has recently been stud
for ‘‘tethered surfaces’’@10#, in which defects are frozen into
a two-dimensional network of covalently bonded partic
fluctuating in three dimensions. It is of considerable inter
to determine what happens when such disordered teth
surfaces are forced to lie flat and brought into contact wit
disordered polycrystalline or amorphous substrate. A part
larly simple example of such tethered disorder is shown
Fig. 2~b!, where a topologically perfect triangular lattice
disrupted by random substitutional disorder. Unfortunate
the method used in this paper cannot be directly applied
such systems@11#. Tethered substitutional disorder inval
dates a straightforward analogy with random field mod
~see Sec. II!. Cule and Hwa studied this problem in on
dimension, and concluded that a new, strongly pinned gla
phase arises, characterized by exponents in the ‘‘rand
po-
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manifold’’ universality class@12#. Similar results may apply
to two-dimensional tethered networks with quenched-in
cancies, interstitials, dislocations, or disclinations, as wel
random substitutional disorder@12#.

A theory of three-dimensional tethered networks wit
both quenched random internal defectsanda quenched ran-
dom external potential would have interesting implicatio
for the tangled arrays of vortex lines which may arise wh
bulk type II superconductors are subjected to strong exte
magnetic fields. If melted flux liquids are cooled rapidl
barriers to flux cutting@13# may become sufficiently large
that the vortex lines freeze at low temperatures into a n
equilibrium directed ‘‘polymer glass’’@14#. The usual trian-
gular Abrikosov flux lattice would then be disrupted by
quenched array of dislocation and disclination lines of ar
trarily large size. The resulting vortex array could have
shear modulus over a wide range of experimental time sc
because of entanglement constraints, and would be subje
point pinning by imperfections in the underlying host sup
conducting material.

This paper is organized as follows. In Sec. II, we pres
the theory of ideal~topologically perfect! two-dimensional
crystals subject to external point disorder. Effects of a
nealed dislocations are discussed in Sec. III, and some
cluding remarks are presented in Sec. IV. Some of the eff
of quenched substitutional disorder are discussed in App
dix A. Technical details of the derivation of the renormaliz

FIG. 2. ~a! Annealed dislocation disorder embedded in an o
erwise sixfold-coordinated membrane. Heavy lines join the 5- a
7-coordinated sites at the cores of the dislocations. The disord
substrate potential is not shown.~b! Random substitutional disorde
in a polymerized membrane which preserves the sixfold coord
tion of a perfect lattice. The disordered substrate potential wh
acts on this lattice is not shown.
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56 799PINNING AND SLIDING OF TETHERED MONOLAYERS . . .
tion group recursion relations used in Sec. II are containe
Appendix B. Appendix C derives the exponentz for a relax-
ational model of tethered crystalline membrane dynam
An Ornstein-Zernicke description of the hexatic phase is
rived in Appendix D.

II. PINNING OF IDEAL CRYSTALS

Consider a two-dimensional Bravais latticeRW mn5maW

1nbW , and denote byuW (m,n) the displacement from the equ
librium positionRW mn . We begin by restricting our analysis t
an ideal lattice of identical particles, where the displaceme
are single-valued functions of position. Thus we exclude
the moment the possibility of topological defects. The stra
associated with random substitutional disorder will be d
cussed later in this section. The energy of an ideal cry
undergoing a small deformation can be expressed, using
tinuum elasticity theory, by the harmonic Hamiltonian

H05
1
2 E d2r ~luii

212mui j
2 !, ~2.1!

wherel andm are Lame´ coefficients, and the strain tensor
defined as

ui j ~rW !5 1
2 ~] iuj1] jui !. ~2.2!

The only regular lattice in two dimensions with sufficie
symmetry to be described by theisotropic elastic theory
~2.1! is a triangular array@15#. In this case, it is convenient t
take

aW 5a0~1,0!, bW 5a0S 12 ,A32 D , ~2.3!

wherea0 is the lattice constant.
If the lattice is subjected to an external pinning p

tential, the total pinning energy is given byUpin

5(mnV@RW mn1uW (m,n)#. With the aid of Poisson’s summa
tion formula, we write

Upin5E d2rV~r !(
mn

d2@rW2RW mn2uW ~m,n!#

5E d2rV~r !E ds1E ds2d
2@rW2s1aW 2s2bW

2uW ~s1 ,s2!#(
pq

e2p i ~ps11qs2!, ~2.4!

where (m,n) and (p,q) are pairs of integers. Next w
change integration variables froms1 ,s2 to rW5(x,y)
5s1aW 1s2bW 1uW (s1 ,s2). The Jacobian of this tranformatio
is

]s1

]x

]s2

]y
2

]s1

]y

]s2

]x
.

1

uaW 3bW u
~12¹W •uW !. ~2.5!

The d function in Eq.~2.4! fixes the values ofs1 ands2 to
be the root of
in

s.
-

ts
r
s
-
al
n-

s1aW 1s2bW 1uW ~s1 ,s2!5rW, ~2.6!

which can be expanded as a power series in the small
placementuW . Upon noting that the zeroth order term is

s1
05

~rW3bW !• ẑ

uaW 3bW u
, s2

052
~rW3aW !• ẑ

uaW 3bW u
~2.7!

and using thed function to eliminate the integrals overs1
ands2, we can write the total pinning energy as

Upin'E d2rV~r !
1

uaW 3bW u
~12¹W •uW !(

mn
eiG

W
mn•[ r

W2uW ~rW !] ,

~2.8!

where$GW mn% are reciprocal lattice vectors. The total Ham
tonian of the system is obtained by adding the Hamilton
of an ideal two-dimensional crystal to the pinning energ
We study the effect of a random distribution of weak pinni
potentials, with mean and variance defined by

V~rW !50, V~rW !V~rW8!5Dd2~rW2rW8!. ~2.9!

If we restrict our attention to the seven smallest recipro
lattice vectors~includingGW mn50) in the summation of Eq.
~2.8!, then the total Hamiltonian which comprises our mod
may be approximated~up to an additive constant! by

H5
1

2E d2r S luii
212mui j

22w~rW !uii

1(
l51

3

VGl
~rW !e2 iGW l•u

W ~rW !D , ~2.10!

where theGW l , l51, 2, and 3, are three reciprocal lattic
vectors inclined at 120° angles to each other in the innerm
ring,

w~rW !5
V~rW !

uaW 3bW u
, ~2.11!

andVGW (rW) is a local Fourier component of the random p
tential,

VGW ~rW !5
1

DVE d2r 8eiG
W
•rW8

V~rW8!

uaW 3bW u
. ~2.12!

The integration is carried out over an areaDV, centered on
rW, large compared to the lattice spacing but small compa
to the sample dimensions. We have neglected terms of
form ¹W •uW exp(iGW l•@rW2uW(rW)#), which are irrelevant variables
on the surface of fixed points we discuss below. In Appen
A, we show that random substitutional disorder contribu
to w(rW) and leads as well to a random term of the form2
1
2*d

2r wi j (rW)ui j (rW). A two-dimensional bead and sprin
model @1# with random spring lengths contains similar co
tributions. Quenched substitutional disorder has import
additional effects, however. Internal disorder in the parti
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800 56CARLO CARRARO AND DAVID R. NELSON
sizes or bond lengths violates thediscrete translational in-
variance of the Hamiltonian~2.10! under uW (rW)→uW (rW)
1RW mn . Cule and Hwa argued that this symmetry break
leads to an effective ‘‘random manifold’’ potential whic
depends in a complicated way onboth rW and uW (rW), and
causes an instability to a more strongly pinned glassy ph
than the one studied here@12#.

For tethered networks ofidentical particles, we expec
that pinning effects due to the random phases and amplitu
embodied in$VGl

% will be important below some critica
temperature, and that the properties of the system in the
cinity of this temperature will be perturbatively accessible
renormalization group methods. The starting point of
renormalization program is perturbation theory. Computat
of the disorder-averaged observables of interest, such a
free energy or the two-point functions, requires expand
the logarithm of the partition functionZ in powers of the
weak pinning potential and averaging term by term. Su
averages are conveniently handled by the replica trick, wh
involves first calculatingZn511nlnZ1O(n2) and eventu-
ally taking the limitn→0. The disorder average ofZn leads
to

Zn5E DuW 1•••DuW ne2Hn
0/T2Hn

I /T, ~2.13!

where the harmonic term is

Hn
0

T
5

1

2T(ab

n E d2k

~2p!2
uia~2kW !k2$@mPi j

T1~2m1l!Pi j
L #dab

2BPi j
T2APi j

L %ujb~kW !, ~2.14!

and the interaction term is

Hn
I

T
52g(

l51

3 E d2r(
ab

n

cos„GW l•@uW a~rW !2uW b~rW !#….

~2.15!

Greek indices label different replicas, while latin subscri
( i , j51,2) are used for the components of the displacem
vectoruW . Summation over repeated indicesi and j is under-
stood. The vectorsGW l are the smallest nonzero vectors in t
reciprocal lattice. For a triangular lattice of spacinga0,
l51,2,3 anduGl u2516p2/3a0

2. Effects due to reciprocal lat
tice vectors of larger norm are irrelevant.

The structure of the replicated Hamiltonian is qu
simple. The harmonic part contains a term diagonal in
replica indices. This is simply the replicated Hamiltonian
an ideal two-dimensional crystal in Fourier space, wh
Pi j
L and Pi j

T are longitudinal and transverse projectors,
spectively. In addition, transverse and longitudinal terms
considered, which are constant in replica space. The t
verse term, while not present initially, is generated by ren
malization. Its coefficientB can be set to zero initially. The
cosine term arises as a consequence of the discrete natu
the lattice. Its amplitude is related to the correlation funct
of the randomness by
g
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g5
D

T2V2 , ~2.16!

whereV5uaW 3bW u is the area of the unit cell.
The use of replicas brings out an important property of

model. Note that the interaction term involves only diffe
ences of fields with different replica indices. Hence t
‘‘center of mass,’’ in replica space, of the fieldsuW a ,

CW [n21/2(
a

uW a , ~2.17!

is a free field and does not suffer renormalization. This sy
metry implies that 2m1l2nA, m2nB do not renormalize,
a result valid to all orders in perturbation theory, similar
the invariance under renormalization of the spin wave st
ness in the random-fieldXY model @16#. As a consequence
the renormalization group flow of the disorder coupling,g, is
one dimensional.

Next, consider the connected Green’s function

^ui~rW !uj~rW8!&c52
]2lnZ

]Ji~rW !]Jj~rW8!

52
1

n

]2Zn@JW #

]Ji~rW !]Jj~rW8!
U
n50

, ~2.18!

obtained from the generating functional

Zn@JW #5ZnK expS i E d2r JW~rW !•(
a

uW a~rW ! D L
R

.

~2.19!

Hereafter, the notation̂ &R will stand for average with re-
spect to the integrand in Eq.~2.13!. Since the sourceJW

couples only toCW , a free field, this Green’s function is th
free correlation function, independent ofg,

^ui~rW !uj~rW8!&c52d i j
T

4pm

3m1l

2m1l
ln

urW2rW8u
a0

1const,

urW2rW0u→`, ~2.20!

where the connected part iŝA(x)B(x8)&c5^A(x)B(x8)&
2^A(x)&^B(x8)&. Thus this connected correlation functio
is insensitive to the presence of randomness in the syste

The peculiar properties of the glassy phase do app
however, in the nontrivial behavior of some response fu
tions as well as in the full correlation functio

^ui(rW)uj (rW8)&, which, according to the analysis above, is
probe of sample-to-sample fluctuations. In the language
replicas, these fluctuations are captured by introducin
replica-dependent source field,JWa(rW), and a new generating
functional

Zn@$JWa%#5ZnK expS i E d2r(
a

JWa~rW !•uW a~rW ! D L
R

.

~2.21!
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56 801PINNING AND SLIDING OF TETHERED MONOLAYERS . . .
Differentiation with respect toJWa yields the Green’s func-
tions

Gi j ab~rW2rW8!5^uia~rW !ujb~rW8!&R . ~2.22!

Provided symmetry under permutation of the replica indi
holds, we can write

^ui~rW !uj~rW8!&c5 lim
n→0

@Gi j 11~rW2rW8!2Gi j 12~rW2rW8!#,

^ui~rW !uj~rW8!&5 lim
n→0

Gi j 11~rW2rW8!, ~2.23!

where the limitn→0 is here simply a convenient bookkee
ing device for doing perturbation theory.

The perturbation series for the disorder-averaged Gre
functions diverges in the thermodynamic limit at low tem
perature. The divergent diagrams are most easily recogn
by considering the expansion of the free energy,

~F2F0!52 lim
n→0

1

n
„2^Hn

I &R1 1
2 @^~Hn

I !2&R

2^~Hn
I !&R

2 #1•••…. ~2.24!

Upon defining a reduced temperature

t[12
T

Tg
512

TuGu2

8pm

3m1l

2m1l
, ~2.25!

one finds, up to regular terms, in orderg,

2
^Hn

I &R
T

;gca2n~n21!3p~L/aAc!2t, ~2.26!

and, in order (g2),

1

2T2
^~Hn

I !2&R;2g2c2a4n~n21!@ I 0~c!1~n22!I 0~c/2!#

33p2S L

aAcD
2t

2

2t
@~L/aAc!2t21#.

~2.27!

Infrared and ultraviolet cutoffsL and a, respectively, have
been introduced;c5 1

4e
2E'0.79, whereE is Euler’s con-

stant;I 0 is a modified Bessel function, and

c[
TuGu2~m1l!

4pm~2m1l!
. ~2.28!

The details of the calculation can be found in Appendix B
The divergences can be removed order by order i

double expansion in powers ofg and t. The parameters o
the renormalized theory transform, under rescaling of len
by el , according to the following equations:
s

’s

ed

a

th

dl

dl
50,

dm

dl
50,

d g̃

dl
52t g̃2

2

3
g̃2@2I 0~c/2!2I 0~c!#, ~2.29!

dA

dl
5 g̃2 43m

2m1l

3m1l
@ I 0~c!2 1

2 I 1~c!#,

dB

dl
5 g̃2 43m

2m1l

3m1l
@ I 0~c!1 1

2 I 1~c!#,

whereg̃[3pgca2(L/aAc)2t. The flow of the disorder cou-
pling to zero fort,0, i.e., forT.Tg , means that the dis
creteness of the lattice is irrelevant in the high temperat
phase. Thus the correlation functions in this phase are sim
to the Gaussian model of Ref.@17#. In particular,

^ui~rW !ui~0!&;2h lnr , ~2.30!

where

h5uGW u2S T

4pm

3m1l

2m1l
1

D

4p~2m1l!2

1
A

4p~2m1l!2
1

B

4pm2D . ~2.31!

BelowTg , on the other hand, the disorder coupling flow
toward a finite fixed point value ofg̃*53t/@2I 0(c/2)
2I 0(c)#. The runaway flows ofA andB cause the correla
tion function in Eq.~2.30! to grow as ln2r, a behavior which
was termed ‘‘super-roughening’’ in the context of sca
models of surface growth@18#.

The change in equilibrium correlation functions fro
‘‘rough’’ ln r growth to ‘‘super-rough’’ ln2r growth is a char-
acteristic of the low temperature glassy phase@3,18#. An-
other distinctive property of the glassy phase is the nontriv
near-equilibrium dynamics. The dissipative dynamics of
system embodied in the Langevin equation

g] tuW 52
dH

duW
1zW , ~2.32!

with zW a thermal noise, can also be studied by dynami
renormalization group methods@19#. The detailed treatmen
of this model is described in Appendix C. Regularization
the perturbative expansion of the dynamic response lead
a renormalized friction coefficientg, from which the dy-
namic exponent can be extracted

z52, T.Tg ,

z521
24

Ac
2m1l

3m1lS m

2m1l D m/~3m1l! t

@2I 0~c/2!2I 0~c!#
,

T,Tg , ~2.33!
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802 56CARLO CARRARO AND DAVID R. NELSON
wherec5 1
4e

2E'0.79 is the same function of Euler’s con
stant as appears in the static calculation, andc was defined
in Eq. ~2.28!.

III. EXTERNAL DISORDER
AND TOPOLOGICAL DEFECTS

The foregoing discussion assumed the fixed topology
an ideal lattice. Spontaneous nucleation of topological
fects, which occurs above the melting temperature

TM5
m

4p

m1l

2m1l
a2, ~3.1!

destroys translational long range order@8#. The ratio of the
glass temperature to the melting temperature is alw
greater than 1~in fact, Tg /TM>6 for all elastic constan
values in the physically relevant rangem.0, m1l.0), so
that dislocations are expected to be a strongly relevant
turbation atTg . Thuseitherthe random substrate potential
thermally excited dislocation pairs always destabilize
harmonic Hamiltonian, and the transition of Sec. II does
occur in the presence of annealed topological defects.

Although annealed dislocations destroy translational lo
range order, the resulting hexatic phase does possess~alge-
braic! long range order in the bond angle. A harmon
Hamiltonian for the hexatic phase can be obtained in
Ornstein-Zernicke approximation, valid at long waveleng
The details of the derivation are presented in Appendix
We can consider the stability of the long wavelength Ham
tonian, Eq.~D14!, to an external random potential coupled
the bond angle. An experimental realization of this system
provided by a hexatic liquid crystalline film adsorbed onto
polycrystalline substrate, that is, a substrate whose rando
varying crystallographic axes locally bias the orientation
the bonds in the film. The total Hamiltonian becomes p
cisely that of a random fieldXY model, which was studied
by Cardy and Ostlund@3#. Similar to the case ofuntethered
crystalline films discussed above, it follows from Ref.@3#
that the harmonic Hamiltonian~D14! is always destabilized
either by the external disorder or by thermally exciteddiscli-
nations. There is an important difference between crystall
and hexatic membranes, however. In the case of a crysta
membrane, the ideal topology can be fixed by polymeri
tion, and the fixed line discovered in Sec. II should be
perimentally accessible. In contrast, it is impossible to p
vent disclinations from destabilizing the vortex glass fix
line in a hexatic film, except by quenching the topology
the film. However, in this case Eq.~D14! reveals, upon treat
ing the singular density and bond angle fluctuationsdrs and
dus as quenched variables, that this quenched hexatic p
has a finite shear modulus, rendering the bond fluctuat
massive. Because of the finite shear modulus, the bond a
excitations are stable to weak disorder. Whether a tethe
hexatic~or liquid! film is unstable to a ‘‘random manifold’’
glassy state@12# is an interesting subject for future invest
gation.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we studied the physics of 210-dimensional
arrays of identical particles in an external random potent
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using a vector extension of the 111-dimensional random
phase model. The predictions for vector models without
pological defects are qualitatively similar to the sca
model: the discreteness of the vortex array coherently
hances the Fourier components of the external diso
which are commensurate with the lattice, leading to a gla
phase at low temperature. This phase is characterized
nonlinear response to an external driving force, as well as
static correlations which diverge more strongly than a sim
logarithm. Quantitative expressions for the static and
namic exponents near the transition were computed with
perturbative renormalization group scheme.

The physics changes completely, if annealed topolog
defects are allowed in the two-dimensional lattice. The p
sibility of important topological defects constitutes the pri
cipal difference between the 210- and the 111-dimensional
models of vortex arrays. Both annealed and quenched d
cations have been considered, the most interesting case b
provided by quenched dislocations. The nonvanishing sh
modulus of a membrane with quenched-in dislocations p
vents the bond angle from following the random bias of
external polycrystalline substrate, so that the bond angle
der parameter in quenched hexatics is stable to weak diso
of this type@20#.

Our study is relevant to several other situations besi
the pinning of vortex arrays in type II superconductors. S
tems of current experimental interest were mentioned in S
I. Here we would like to comment on possible applications
tribology, the study of friction and lubrication. We are inte
ested in the behavior of two surfaces brought in contact
rubbed against each other in the presence of an interme
thin layer of lubricant. This boundary layer is often model
as a two-dimensional, incommensurate crystalline overla
@21#. Our work may be useful in generating more realis
descriptions which allow for~a! surface imperfections, acting
as pinning centers on the lubricant overlayer; and~b!
changes in topology of the overlayer, especially excitation
dislocations, which must surely be important at finite te
perature and/or under finite stresses. We leave the pursu
this interesting topic to future work.

Noted added: After this paper was submitted, we receive
an interesting preprint by D. Carpentier and P. Le Dous
~cond-mat/9611168! which reaches similar conclusions usin
a different renormalization group method. Comparison w
their results enabled us to uncover an error in the first vers
of our paper, which, although it did not affect our basic co
clusions, changes the coefficients in our recursion relatio
Once the error is corrected, results obtained by the differ
methods agree. We are grateful to P. Le Doussal for bring
this discrepancy to our attention.
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APPENDIX A

Effects due to a disorderedsubstratewere incorporated
into isotropic two-dimensional elasticity theory in Sec. II.
this appendix, we discuss effects on the elastic properties
to random substitutional disorderin the membrane, as exem-
plified by the large impurity atoms displayed in Fig. 2~b!.
We donot discuss the important interplay between rand
substitutional disorder and the disorder substrate pote
@12#. A distribution of impurity atoms with sizes differen
from the average leads to random strains.Annealeddefects
of this kind can be integrated out and simply alter the ela
constantsm and l. As we shall see, the strains in th
quenched case contribute to the coefficientsA and B dis-
played in the replicated Hamiltonian, Eq.~2.14!. Quenched
random vacancy or interstitial defects as well as tigh
bound dislocations pairs or triplets would affectA and B
similarly. We work with a continuum model studied alrea
in the context of random tethered surfaces fluctuating
three dimensions@10#. The only change required is negle
of displacements normal to the average plane of the m
brane. These phonon modes become massive due to th
teraction with the substrate and can be integrated out with
affecting our basic results.

We assume a topolgically perfect lattice and repla
RW mn by a coarse-grained functionRW (rW) which gives the lat-
tice displacementRW as a function of the reference positio
rW. We use a generalization of Eq.~2.1!,

H5 1
2 E d2r ~luii

212mui j
2 !, ~A1!

where the strain matrix is now given by@10#

ui j5
1
2 ~] iRW •] jRW 2] iRW

0
•] jRW

0!. ~A2!

HereRW 0(rW) is a preferred lattice distortion which minimize
the energy in the absence of thermal fluctuations. In the
sence of defects,] iRW

0
•] jRW

05d i j . Localized defects like
substitutional disorder, vacancies, interstitials, etc., lead
deviations which we parametrize by

] iRW
0
•] jRW

05d i j1ci j ~rW !. ~A3!

If we assume an uncorrelated Gaussian disorder, the p
ability distribution of the tensorci j (rW) takes the form@10#

Pr@ci j ~rW !#}expS 2
1

2s1
E d2rcii

22
1

2s2
E d2r ci j

2 D .
~A4!

We now setRW (rW)5rW1uW (rW), so that

] iRW •] jRW 5d i j1
1
2 ~] iuj1] jui !1 1

2 ] iuW •] juW 'd i j1ui j .
~A5!

Hamiltonian~A1! then takes the form

H5const1 1
2 E d2r @luii

212mui j
22lcii ~rW !uj j ~rW !

22mci j ~rW !ui j #. ~A6!
ue
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The term proportional touii represents random dilations o
contractions due to isolated impurities in positions of hi
symmetry, while the more complicated tensorial coupli
describes more anisotropic defect configurations. Upon r
licating this Hamiltonian and tracing out the Gaussian dis
der, we obtain contributions to the coefficientsA andB in
Eq. ~2.14!.

APPENDIX B

This appendix details the calculations leading to the fl
equations forg, A, andB. We begin by evaluating the righ
hand side of Eq.~2.24! term by term. To orderg,

KHn
I

T L 52g(
l51

3 E d2r(
ab

n

^exp$ iGW l•@uW a~rW !2uW b~rW !#%&

52g(
l51

3 E d2r(
ab

n

expF2TE d2k

~2p!2
1

k2
Gi
l

3S 1m Pi j
T1

1

2m1l
Pi j
L DGj

l G . ~B1!

Before proceeding with the calculation, we must introdu
cutoffs to deal with infrared and ultraviolet singularities ar
ing from integrals of the type

E d2k

~2p!2
Gi
l e

ikW•rW

k2
Pi j
T,LGj

l . ~B2!

A long wavelength cutoffL is introduced to eliminate infra-
red divergences. Its effect amounts to shiftin
1/k2→1/(k21L22). The limit L→` can be taken safely a
the end of the calculations. The ultraviolet divergences
removed in coordinate space by the simple sh
r→Ar 21a2, wherea is a short wavelength cutoff of orde
the lattice constant. Note the short distance limit

E d2k

~2p!2
eik

W
•sW

k21L22U
s25r21a2

5
1

2p
K0SAr 21a2

L D
→2

1

4p
logc

~r 21a2!

L2
,

r

L
!1. ~B3!

Here, K0 is a modified Bessel function, andc5(1/4)e2g,
whereg is Euler’s constant. Thus, the asymptotic behav
of the integrals in Eq.~B2! is readily evaluated

E d2k

~2p!2
Gi
le
ikW•rW

k2
Pi j
T,LGj

l→2
uGu2

8p
ln
c~r 21a2!

L2

6S ~GW •rW !2

4pr 2
2

uGu2

8p
D . ~B4!

Upon substituting into Eq.~B1!, and recalling Eq.~2.25!,
which defines the reduced temperaturet[12(T/Tg)
512(TuGu2/8pm)(3m1l/2m1l), we obtain Eq.~2.26!.

Next, in orderg2, one has
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K SHn
I

T D 2L 5g2(
l51

3

(
l 851

3

(
ab

n

(
a8b8

n E d2r E d2r 8^exp$ iGW l•~uW a~rW !2uW b~rW !#%exp$ iGW l 8•@u
W

a8 ~rW8!2uW b8 ~rW8!#%&

5g2(
l51

3

(
l 851

3

(
ab

n

(
a8b8

n S ã
L
D ~424t!E d2r E d2r 8expS 2TQab

a8b8
GW l•GW l 8
8pm

3m1l

2m1l
ln
c~ urW2rW8u21a2!

L2
D

3expF2TQab
a8b8 ~m1l!

4pm~2m1l!~GW l•~ r̂2 r̂ 8!GW l 8•~ r̂2 r̂ 8!2 1
2 ! G , ~B5!

whereQab
a8b85daa81dbb82dab82da8b , and use has been made of Eq.~B3! in anticipation of the thermodynamic limit

Hereafter,ã[Aca andc[@TuGu2(m1l)#/@4pm(2m1l)#.

Logarithmic divergencies appear, at the critical temperature (t50), whenGW l•GW l 8Qab
a8b8/uGu251. The logarithmically

divergent terms contribute to the multiplicative renormalization of the couplingg, while all other terms can be absorbed in
an additive constant.~Had we chosen to renormalize the self energy, the need of an additive renormalization would no
arisen, but the calculations would have been considerably more involved.! To proceed, we first fixl , a, andb, which can be

done in 3n(n21) independent ways. Then, logarithmic contributions arise either forl 85 l , Qab
a8b851, or for l 8Þ l ,

Qab
a8b8522. The respective combinatorial weights are 2(n22) and 2. Carrying out the remaining integrals leads to

~2.27!.
We now compute the flow of the coupling constantsA, B under renormalization group transformations. Because

self-energy is momentum independent in the first order of perturbation theory, the lowest order contribution to the pert
renormalization ofA, B arises inO(g2). The free propagator in momentum space, obtained from Eq.~2.14!, can be written as
the sum of two terms:

Gi j ab
0 ~k!5Mi j ~k!dab1Ni j ~k!,

Mi j ~k!5
1

k2S 1m Pi j
T1

1

2m1l
Pi j
L D , ~B6!

Ni j ~k!5
1

k2
B

m~m2nB!
Pi j
T1

1

k2
A

~2m1l!~2m1l2nA!
Pi j
L .

The perturbative expansion of the generating functional Eq.~2.21! through second order reads as

Zn@$JWa%#5expS 2
T

2E d2k

~2p!2(a (
i j

Jia~kW !Mi j ~k!Jja~2kW !1(
ab

Jia~kW !Ni j ~k!Jjb~2kW ! D
3S 11gF1~J!1

g2

2
F2~J!1••• D , ~B7!

where

F2~J!5(
l l 8

(
ab

(
a8b8

E d2r E d2r 8S ã
L
D ~424t!

expS 2TQab
a8b8(

i j
Gi
lM i j ~rW2rW8!Gj

l 8DexpF2TE d2k

~2p!2

3S (
i j

Gi
lM i j ~k!@Jja~kW !2Jjb~kW !#e2 ikW•rW1(

i j
Gi
l 8Mi j ~k!~Jja8~k

W !2Jjb8~k
W !!e2 ikW•rW8D G . ~B8!

Thus the renormalized propagatorNi j
R(k) can be calculated perturbatively as

2TNi j
R~k!d~kW1kW8!52TNi j ~k!d~kW1kW8!1

~2p!2g2

2

d2F2~J!

dJil~kW !dJjm~kW8!
U
J50

1•••, ~B9!
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with

d2F2~J!

dJil~kW !dJjm~kW8!
U
0

5(
l l 8

(
ab

(
a8b8

E d2r E d2r 8S ã
L
D ~424t!

expS 2TQab
a8b8(

i 8 j 8
Gi 8
l M i 8 j 8~r

W2rW8!Gj 8
l 8 D T2

~2p!4(i 8 j 8

3@Gi 8
l M i 8 i~k!~dal2dbl!e2 ikW•rW1Gi 8

l 8Mi 8 i~k!~da8l2db8l!e2 ikW•rW8#@Gj 8
l M j 8 j~k8!~dam2dbm!e2 ikW8•rW

1Gj 8
l 8M j 8 j~k8!~da8m2db8m!e2 ikW8•rW8#. ~B10!

Contributions behaving as 1/k2 for small k arise from

(
l l 8

(
ab

(
a8b8

E d2r E d2r 8S ã
L
D ~424t!

expS 2TQab
a8b8(

i j
Gi
lM i j ~rW2rW8!Gj

l 8D T2

~2p!4(mm8
@Gm

l Mmi~k!~dal2dbl!

3e2 ikW•rWGm8
l 8 Mm8 j~k8!~da8m2db8m!e2 ikW8•rW81Gm

l 8Mmi~k!~da8l2db8l!e2 ikW•rW8Gm8
l Mm8 j~k8!~dam2dbm!e2 ikW8•rW#

5d~kW1kW8!(
l l 8

(
ab

(
a8b8

E d2sS ã
L
D ~424t!

expS 2TQab
a8b8(

i j
Gi
lM i j ~s!Gj

l 8D 2T2

~2p!2
~kW•sW !2(

mm8
Gm
l Gm8

l 8 MmiMm8 j~dal2dbl!

3~da8m2db8m!. ~B11!

Power counting reveals that logarithmic divergencies arise whenl5 l 8 anda5b8 andb5a8. Thus, with the help of the
relations

(
l
Gm
l Gm8

l
5 3

2 uGu2dmm8,

(
l
Gm
l Gm8

l
~Ĝ• k̂!25 3

8 uGu2~Pmm8
T

13Pmm8
L

!, ~B12!

we obtain

Ni j
R~k!5Ni j ~k!1g2ã4uGu2T

3p

2 S 1

m2k2
Pi j
T@ I 0~c!1 1

2 I 1~c!#1
1

~2m1l!2k2
Pi j
L @ I 0~c!2 1

2 I 1~c!# D 14tF S Lã D 4t

21G .
~B13!

Upon projecting out of Eq. ~B13! the longitudinal and transverse components, and recalling
uGu2T58pm(2m1l)/(3m1l)1O(t), we finally arrive at the flow equations

L
dA

dL
5g2ã4S L

ã
D 4t

12p2m
2m1l

3m1l
@ I 0~c!2 1

2 I 1~c!#,

L
dB

dL
5g2ã4S L

ã
D 4t

12p2m
2m1l

3m1l
@ I 0~c!1 1

2 I 1~c!#. ~B14!

APPENDIX C

This appendix details the calculation of the dynamical exponentz. Consider the Langevin equation for the free Hamiltoni
H0 of Eq. ~2.14!,

g] tuW ~rW,t !52
dH0

duW ~rW,t !
1zW~rW,t !, ~C1!

wherez is a white noise defined by the correlation

^z i~rW,t !z j~rW8,t8!&52Dd i jd~rW2rW8!d~ t2t8!. ~C2!

The fluctuation-dissipation theorem insures that thermal equilibrium at temperatureT is established forD5Tg.
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Equation~C1! is easily solved. The momentum- and frequency-dependent transverse and longitudinal correlation fu
read

Si j
0T~kW ,v![^ui~kW ,v!uj~2kW ,2v!&T5

2Dg22

v21g22m2k4
Pi j
T ,

Si j
0L~kW ,v![^ui~kW ,v!uj~2kW ,2v!&L5

2Dg22

v21g22~2m1l!2k4
Pi j
L . ~C3!

The presence of an external pinning potential turns Eq.~C1! into Eq. ~2.32! by introducing on the right hand side th
additional term

2
dUpin

duW ~rW,t !
5
2V~rW !

uaW 3bW u
(
l51

3

GW lsin„GW l
•@rW2uW ~rW,t !#…, ~C4!

which can be regarded as a perturbation. First order perturbation theory can thus be employed to compute the c
functions. The perturbation series is found again to diverge logarithmically belowTc . This divergence causes the dynamic
exponent to deviate from its mean field value,z52 @22#. To quantify this deviation, consider the transverse correla
function

^ui~kW ,v!uj~2kW ,2v!&T5
1

v21g22m2k4
@2Dg22Pi j

T1Pim
T Pin

T ^F̂m~kW ,v!F̂n~2kW ,2v!&#1•••, ~C5!

where the overline indicates averaging over the external pinning disorder, and we have defined

F̂ i~kW ,v!5E d2r E dt eivte2 ikW•rW
dUpin

dui~rW,t !
. ~C6!

Upon carrying out the disorder average, we obtain

^F̂ i~kW ,v!F̂ j~2kW ,2v!&5E dt eivt2g(
l51

3

Gi
lGj

l ^cosGW l
•@uW ~rW,t !2uW ~rW,0!#&. ~C7!

Noting that

^cosGW l
•@uW ~0,t !2uW ~0,0!#&5S ã

L
D 222t

expS (
i j

E d2k

4p2Gi
l@Si j

0T~kW ,t !1Si j
0L~kW ,t !#Gj

l D
5S ã

L
D 222t

expF uGu2T
8 E

0

`

dk kS e2~m/g!k2utu

mk2
1
e~2m1l!/gk2utu

~2m1l!k2
D G

5S ã
L
D 222tS m

2m1l D ~12t!m/~3m1l!S L2

2Acg21mutu
D 12t

, ~C8!

and settingv50, we arrive at

^F̂ i~kW ,v!F̂ j~2kW ,2v!&52g ã2
3

2m
uGu2d i j S m

2m1l D m

3m1l

2g

Ac
lnS LaD1O~gt!. ~C9!
o
in
e

Thus we can write

L
dD

dL
524pga2S LaD 2t

Ac
2m1l

3m1lS m

2m1l D m/~3m1l!

[z~g!.

~C10!

The dynamical exponent is determined by the value
z(g) at the fixed point
f

z521z~g* !, ~C11!

leading to Eq.~2.33!.

APPENDIX D

The Ornstein-Zernicke theory of hexatics is derived
this appendix. We start from the partition function of th
crystal
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Z5E D@u1#D@u2#exp~2F/T!, ~D1!

where

F5 1
2 E d2r ~luii

212mui j
2 !. ~D2!

In the presence of dislocations, the displacement fielduW is
multivalued; if an arbitrary loopL encloses dislocations with
total Burger’s vectorbW , then

R
L
] iujdxi5bj . ~D3!

It is convenient to express Eq.~D3! in local form,

e ike j l ]k] lui j ~rW !5(
a

bW a3¹W d~rW2rWa![S~rW !. ~D4!

Here we have introduced a source termS(rW) related to the
local density of Burger’s vectors; it can be easily generaliz
to include other types of defects, such as disclinations,
cancies, or interstitials@23#.

The partition function can now be evaluated as an un
ticted integral over the three independent components of
symmetric strain tensorui j , provided that constraint~D4! is
enforced. This is easily accomplished with the aid of an a
iliary field c:

Z5E D@u11#D@u12#D@u22#D@c#exp~2F/T!

3expS i E d2r c~r !@e ike j l ]k] lui j ~rW !2S~rW !#G . ~D5!

Next we write, as can be most generally done for a
symmetric tensor,

ui j ~rW !5 1
2 ~] iv j1] jv i !1Pi j

Th, ~D6!

where v(rW) is a single-valued vector~describing, e.g., the
small thermal displacements of the atoms from the sites
randomly distorted lattice!, andh(rW) a scalar field, related to
the defect densityS(rW), in terms of which the constrain
enforced by the auxiliary fieldc becomes

¹2h~rW !5S~rW !. ~D7!

The partition function becomes a functional integral ov

vW , h, andc, and the latter fields can be integrated out eas
to obtain the free energy functional

F5 1
2 E d2k

~2p!2
v i~2kW !k2@mPi j

T1~2m1l!Pi j
L #v j~kW !

1lE d2r ~¹¢ •vW !¹22S~rW !1 1
2 ~2m1l!

3E d2r @¹22S~rW !#2. ~D8!
d
a-

s-
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-

y

a

r
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This is a rather general expression of the two-dimensio
elastic free energy. It allows us to study the effect of bo
quenched and annealed defects.

First, we consider the effect of annealed dislocations. I
instructive to recast Eq.~D8! in terms of density fluctuation
and bond angle variablesdr andu, respectively, which are
related to the divergence and curl of the displacement vec
dr5¹¢ •uW , u5¹¢ 3uW /2. Because the displacement vector d
composes naturally into single-valued and singular parts

uW 5vW 1uW s , ~D9!

so do the density fluctuation and bond angle variables:

u5u01us , dr5dr01drs . ~D10!

The defect source termS(rW) can be expressed in terms o
rs by noting first that, for a distribution of dislocations wit
Burger vector density bW (rW)5(abW

ad(rW2rWa) and
S(rW)52¹¢ 3bW (rW) from Eq. ~D4!, and, hence,

¹22S~rW !5
1

12s
¹¢ •uW s5

drs
12s

, ~D11!

wheres5l/(2m1l) is the Poisson ratio.
The partition function of annealed dislocations@8# in-

volves averaging over thermally excited Burger’s vecto
with weight proportional to

expS 2EcE d2r bW ~rW !•bW ~rW ! D
5expF2EcE d2r S 4~¹us!

21
1

~12s!2
~¹drs!

2D G .
~D12!

Thus, from Eqs.~D8!–~D12!, it follows that

Zannealed5E Ddr0DdrsDu0DusexpS 2
Fannealed

T D ,
~D13!

with

Fannealed5 1
2 E d2r @4mu0

21~2m1l!~dr0!
2#

1
l

12sE d2r ~dr0!~drs!1
2m1l

2~12s!2

3E d2r ~drs!
21EcE d2r S 4~¹us!

2

1
1

~12s!2
~¹drs!

2D . ~D14!

Consider now the linear response of the system to a pr
coupled to the bond angle. One finds easily that
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1

m~q!
5
1

m
1

1

Ecq
2 , ~D15!

showing that the shear modulusm vanishes at long wave
lengths for finiteEc ~i.e., above the melting temperature!.
.

cs

r-
rg

ti
A

Similar behavior form(q) was found by Marchetti and Nel
son in a dislocation loop model of the melted Abrikosov fl
lattice @24#. In contrast, the coupling betweendr0 and drs
prevents the bulk modulus from vanishing at long wav
lengths.
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